NP completeness of the edge precoloring extension problem on bipartite graphs
نویسنده
چکیده
We show that the following problem is NP complete: Let G be a cubic bipartite graph and f be a precoloring of a subset of edges of G using at most three colors. Can f be extended to a proper edge 3-coloring of the entire graph G? This result provides a natural counterpart to classical Holyer's result on edge 3-colorability of cubic graphs and a strengthening of results on precoloring extension of perfect graphs.
منابع مشابه
NP-completeness of list coloring and precoloring extension on the edges of planar graphs
In the edge precoloring extension problem we are given a graph with some of the edges having a preassigned color and it has to be decided whether this coloring can be extended to a proper k-edge-coloring of the graph. In list edge coloring every edge has a list of admissible colors, and the question is whether there is a proper edge coloring where every edge receives a color from its list. We s...
متن کاملPrecoloring Extension. Ii. Graphs Classes Related to Bipartite Graphs
We continue the study of the following general problem on vertex col-orings of graphs. Suppose that some vertices of a graph G are assigned to some colors. Can this \precoloring" be extended to a proper coloring of G with at most k colors (for some given k)? Here we investigate the complexity status of precoloring extendibility on some graph classes which are related to bipartite graphs, giving...
متن کاملPrecoloring Extension . Ii . Graphs Classes Related to Bipartite Graphsm
We continue the study of the following general problem on vertex col-orings of graphs. Suppose that some vertices of a graph G are assigned to some colors. Can this \precoloring" be extended to a proper coloring of G with at most k colors (for some given k)? Here we investigate the complexity status of precoloring extendibility on some graph classes which are related to bipartite graphs, giving...
متن کاملA note on the NP-completeness of the precoloring extension coloring problem in triangle free planar graphs
The precoloring extension coloring problem consists in deciding, given a positive integer k, a graph G = (V,E) and k pairwise disjoint subsets V0, . . . , Vk−1 of V , if there exists a (vertex) coloring S = (S0, . . . , Sk−1) of G such that Vi ⊆ Si, for all i = 0, . . . , k − 1. In this note, we show that the precoloring extension coloring problem is NP-complete in triangle free planar graphs w...
متن کاملPrecoloring extension on unit interval graphs
In the precoloring extension problem we are given a graph with some of the vertices having a preassigned color and it has to be decided whether this coloring can be extended to a proper k-coloring of the graph. Answering an open question of Hujter and Tuza [6], we show that the precoloring extension problem is NP-complete on unit interval graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Graph Theory
دوره 43 شماره
صفحات -
تاریخ انتشار 2003